Customer Retention using Data Mining Techniques
نویسندگان
چکیده
منابع مشابه
Predicting Customer Loyalty Using Data Mining Techniques
This research aimed on prediction of customer loyalty (Non loyal or Loyal) using the application of data mining in microfinance that helps to build a classification model which supports during loan decision making in the organization. In this study a classification model is built based on the loan data obtained from Joshua Multi Purpose Limited Liability Cooperative (JMPLLC). Experiments using ...
متن کاملUsing Data Mining Techniques in Customer Segmentation
Data mining plays important role in marketing and is quite new. Although this field expands rapidly, data mining is still foreign issue for many marketers who trust only their experiences. Data mining techniques cannot substitute the significant role of domain experts and their business knowledge. In the other words, data mining algorithms are powerful but cannot effectively work without the ac...
متن کاملmining customer dynamics in designing customer segmentation using data mining techniques
one of the main problems in dynamic customer segmentation is finding the dominant patterns of customer movements between different segments via time. accordingly, we concentrate on the customer dynamics in this paper and try to find different groups of customers in transmissions between segments via time. the dominant characteristics of these groups are also investigated. to obtain this objecti...
متن کاملCustomer Behavior Mining Framework (CBMF) using clustering and classification techniques
The present study proposes a Customer Behavior Mining Framework on the basis of data mining techniques in a telecom company. This framework takes into account the customers’ behavior patterns and predicts the way they may act in the future. Firstly, clustering technique is used to implement portfolio analysis and previous customers are divided based on socio-demographic features using k</em...
متن کاملAnalysis of Student Data for Retention Using Data Mining Techniques
At most universities, administrators and counselors are trying to devise sound methodologies to help increase student retention rates. Due to the vast amount of student data that is available, sorting through the data to extract useful knowledge is a daunting task. However, the data may be helpful in predicting future student trends – particularly as it relates to retention. In this paper, we d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2010
ISSN: 0975-8887
DOI: 10.5120/1576-2108